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LOW-ENERGY SCATTERING OF ELECTRONS AND POSITRONS IN LIQUIDS

D.M. Schrader
Chemistry Department, Marquette University
Milwaukee, WI 53233, USA

ABSTRACT

The scattering of low-energy electrons and positrons is described for the liquid phase and
compared and contrasted with that for the gas phase. Similarities as well as differences are noted.
The loci of scattering sites, called "spurs” in the liquid phase, are considered in detail. In particular,
their temporal and spatial evolution is considered from the point of view of scattering. Two emphases
are made: one upon the stochastic calculation of the distribution of distances required for slowing
down to thermal velocities, and the other upon the calculation of cross sections for energy loss by
means of quantum mechanics. In these we follow early work by Mozumder and Magee, and by
Lekner, respectively.

INTRODUCTION

A fast electron or positron passing through a liquid is known to deposit its energy piecewise,
in a large number of discrete locations. Thus the concept of free flight between collisions, which
arises so naturally when studying the motions of electrons and positrons in gases, also occurs in
liquids despite the great difference in the physical nature of the two scattering milieus, and provides
us with an interesting stage for comparison of the two situations. There are similarities as well as
differences.

Perhaps the most obvious difference is that the structure of liquids is far more complicated, and
correspondingly less well understood, than that of gases. It is only in the past decade that
experimental and theoretical results have converged for low incident energy in the case of positron
scattering in gases. Therefore we should not expect to understand positron scattering in liquids at
a comparable level. For example, we do not know how to calculate cross sections for energy loss
at the lowest incident energies for liquids, even for electrons. For gases, the processes responsible
for energy loss at lowest energy are simple elastic scattering and (molecules only) rotational excitation
for which many high quality calculations and experiments have been performed. In liquids, the lowest
energy process is the transfer of kinetic energy from the primary particle into intermolecular vibrational
modes of the liquid (i.e., librational excitation, or phonon creation), which is thought to be much more
efficient than either elastic scattering or rotational excitation. In any case, the latter is hindered in
liquids.

lonization in the Liquid Phase

For both liquids and gases, most of the energy deposited by the primary particle goes into
ionization, electronic excitation, and fragmentation of the absorbing entities. For gases this entity is
just one molecule, but for liquids several are normally involved. In either case, secondary electrons
are produced. Multiple ionization of a single molecule is much less likely than single ionization, so
for the gas phase usually only one secondary electron is produced per collision, but for liquids,
several are produced. This is a consequence of the uncertainty principle (see below).

lonization in the gas phase is a well defined event, and it possesses a definite threshold which
can be measured with great accuracy. In liquids, however, there are several effects not present in
gases; some of these contribute to a reduction in clarity of the concept of ionization. Besides the
production of more than one secondary electron in a typical ionization event, these effects include:
(1) The ionized electron enters an energy-absorbing medium upon leaving its molecule; therefore the
work required to remove the electron to infinity at rest includes not only the Coulomb energy of
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attraction for its parent ion, but also the energy transmitted to the medium in transit. The process
responsible for this transfer is stochastic and hence is different for each electron. (2) Many media,
especially polar media, trap the ionized electron while it is still in its outbound trajectory. These traps
{(which can be naturally occurring voids, voids of solvation, or chemical species which bind a primary
particle with or without dissociation, etc.) can, in principle, be anywhere in a given medium. (3) All
condensed media have dielectric constants greater that unity, which thus reduces the ionization
potential compared to the gas phase. Finally, (4) the electron need not be removed to infinity but
only to that critical distance r, where its Coulomb attraction to its parent molecular cation, e%er,, is
equal to the thermal background kT. At this separation, e%ekT, the attraction of the electron for its
parent ion is indistinguishable from the thermal background. The distance r,, called the Onsager
radius, amounts to about 300 A for typical organic liquids at room temperature.

Very few secondary electrons actually escape over this thermal horizon. Most have the opposite
history, namely, immediate recombination with a molecular cation. This can be understood
qualitatively with the aid of the uncertainty principle. Suppose the primary electron deposits 100 eV
in a collision. This is typical. The time required for this to happen must be at least 3 X 10™ sec,
by which time the primary particle travels about 10 A. This establishes the minimum size of the
collision region, and gives a rough lower limit on the number of molecules ionized: 107 cm/(M/pA)'?,
where M is the molecular weight of the medium molecules, p the density of the medium, and A is
Avagadro’s number. For hexane this smallest number of molecules is about two. Actually, it is
known independently that above five ionizations are produced in n-hexane for each 100 eV of energy
loss by the primary particle; or each secondary electron possesses an average energy of 20 eV
initially. They are moving much less rapidly than the primary particle, which we can ignore as a
consequence, and much more rapidly than the massive molecular cations. Each of the five outgoing
secondary electrons therefore looks back on a small entity carrying a total charge of (typically) +5.
The slowest of the five electrons immediately falls back into this vast Coulomb hole. The second
slowest then sees a charge of +4 and also falls back. And so the process continues until (usually)
only one secondary electron is still uncombined. It is interesting that this sequence of recombination
proceeds with memory: the electrons recombine geminately; i.e., each with its own parent ion. This
is known from the observed scarcity of triplet products.

_Focus of this Article

This complicated scenario leads us to a simplification: We need consider only the one surviving
secondary electron. The average initial energy of the original five is 20 eV, and the last survivor is
the most energetic of the five, so perhaps its energy is 40 eV. If the initial energy of the primary
particle is 200 keV and the average energy per deposition is 100 eV (both typical quantities), it
follows that for each primary particle there are about two thousand of these surviving secondary
electrons, each residing in its own discrete region. These regions or entities are strung out randomly
along the trajectory of the secondary particle, and the whole object is called a "track.” In a given
experiment there may be millions or more of these tracks, one for each primary particle, so the
number of entities is billions or more.

Radiaticn chemists study this microensemble of entities and calculate and measure quantities
which represent averages over the microensembles. For positron chemists, the primary particle is
the positron itself, and there is no other positron present, so all the attention is given to the very last
entity in the track of each primary particle. This entity is unique in the microensemble because it
contains the only positron in the system, and because the primary particle forms it at the end of its
track when it is slowest. Hence it cannot be argued that it is a typical entity. It is highly arguable
that it even resembles a typical entity. The question arises: why do positron chemists study the
microensemble? Because if we understand the microensemble (more to the point, a typical entity in
the microensemble), then we have a chance of understanding the terminal positron entity. If we don't
understand the microensemble as a whole, then we cannot understand the last entity in it.

In this article, we focus our attention on this microensemble of secondary electrons, and
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consider their final degradation, starting from a distribution which has a maximum in the neighborhood
of 40 eV, and continuing down to thermal equilibrium.

At 40 eV the dominant mechanism for slowing down is ionization and electronic excitation of
medium molecules. These dominate other processes down to the threshold for excitation, typically
5 eV. This segment of the degradation process is regarded as being reasonably well understood on
the basis of established electronic stopping power laws which yield both the time required and
distance travelled by the slowing secondary electron. From 5 eV down to about 0.5 eV,
intramolecular vibrational excitation is thought to provide the most important slowing down mechanism.
This also is fairly well understood, from the viewpoints of both calculating and measuring cross
sections and of computing ranges and times in the segment. Below 0.5 eV down to KT, the story
is quite different: although it is believed that we have identified the degradation processes (excitation
of intermolecular vibrations), we do not know how to calculate cross sections for them. Times and
distances in this last segment are less certain, but can be inferred from sweeping electric field
measurements and from microwave conductivity measurements.

In the remainder of this article, we consider mainly this last segment, which has been called the
subvibrational region, from two viewpoints: Purely phenomenological descriptions of the degradation
process using assumed cross sections, and considerations of ways to determine the cross sections
themselves from first-principles quantal calculations.

PHENOMENOLOGICAL DESCRIPTION OF THERMALIZATION

The calculation of track structure of the primary particle has recently become an active area of
research. The ever decreasing cost of computation has made large scale Monte Carlo calculations
feasible. These calculations use cross sections from experiment and from other calculations.
Calculations of the spatial, temporal, and ergodic development of the entities along the tracks are not
as numerous or successful because the required cross sections are not all known, as we have
already pointed out. However, the qualitative nature of the physical and chemical processes operating
in the developing entities is fairly well known. It is inviting to conduct model calculations based on
the known qualitative features, using assumed cross sections, and to try to reproduce relevant
experimental observations.

The development of entities can be divided into two parts which we call the prethermal or
physical regime and the postthermal or chemical regime. At the end of the prethermal regime, the
secondary electron becomes thermalized. This takes one to ten picoseconds. In the postthermal
regime, the secondary electron moves around by diffusion and engages in chemical reactions. This
region terminates by recombination or some other reaction, and is essentially complete in a
microsecond. Even though the boundary between these two regions is not perfectly distinct, the two-
region concept is nevertheless useful.

We have already discussed three subregions or segments of the prethermal regime: ionization
and electronic excitation (40 to 5 eV), intramolecular vibrational excitation (5 to 0.5 eV), and
intermolecular vibrational excitation (0.5 to kT). At this point the secondary electrons in the
microensemble are thermalized and have established a distribution f of thermalization distances r,
(as measured from the cation). The functional form of f(7,) is important and can be inferred from
sweeping field measurements, but there is a good deal of uncertainty and controversy regarding its
shape. [1,2] It is this function which provides the point of contact between theory (calculations of the
prethermal regime) and experiment. We now describe this connection.

If an electron comes to rest a distance r, from its parent cation, it is attracted to it by the

Coulomb potential V(r,). The probability that it will diffuse away, beyond the Onsager radius r,, is
given by a Boltzmann factor:

g(re) = exp(-V(r,)/KT) = exp(-r/r,) (1)

151



This resuit is not at all obvious but rather is a seminal contribution by Onsager, [3] who demonstrated
that g(r) is the long time solution of the Smoluchowski equation which describes diffusion of a particle
in a Coulomb field. It follows from eq. (1) and the physical meaning of the distribution function f that
P.... the calculated probability for the whole microensemble for diffusion of secondary electrons out
of the entity and into the bulk liquid, is given by

P = J () g(r) dF. 2)

This quantity can be measured and is tabulated for many liquids. [4,5] It is the ratio of the yield of
free electrons in the bulk of the liquid (ie., beyond the Onsager radius) in the absence of an external
field to the limit yield for high electric fields. Its value depends upon temperature, solute
concentration, etc., and the correlation of the calculated and the measured value for various trial
distribution functions f constitutes the connection between theory and experiment, and tells us what
we know about the functional form of f.

Historically, much more attention has been paid to the postthermal regime. Starting from
thermali;ation, one calculates subsequent deveiopment of the entity b; solving a diffusion equation
using f(r,) as the distribution of secondary electrons at t = 0. Thus (7)) has come to be known as
the "initial" distribution, even though it describes where the electrons are at the conclusion of the
prethermal regime. cmmmT o ’

We now turn to the calculation of the initial distribution function f(Jr') and the theoretical deduction

of the escape probability for the microensemble, P_.. A procedure for the calculation of f was given -

a long time ago by Mozumder and Magee. [6] Some other workers have attempted to calculate f
also, [7-11] but we like the prescription of Mozumder and Magee because it is instructive, it replicates

well the actual physical events, and is easy to understand. It requires considerable calculations,
however, and has not yet been put to an exhaustive numerical test to our knowledge.

" First one chooses AE, the initial energy of the secondary electron. This determines R,, the
distance travelled in the first two segments of the prethermal regime, that is, from an energy of AE

down to E,, the threshold of the subvibrational segment. (See fig. 1.) For AE = 40 eV and E, = 0.5
eV (our example values), this distance is known to be about 25 A for most nonpolar liquids. From

that point to thermalization one assumes the secondary electron proceeds by a random walk. The -

number of steps N in the random walk can be deduced in terms of p, the probability of exciting an

intermolecular vibrational mode in a given mean free path (which are mostly for elastic scattering),

and o, the vibrational quantum lost per inelastic collision, by an energy balance argument: At the
oint R,, the energy of the partical is E, - €%¢R,; after thermalization it has travelled to a new point
; from the cation and has lost the energy Npo to the medium. Hence

2 2

e €

E, - - = 3/2kT - --— + Npo. 3) -

eR, eR;

By assuming a value for the product pw, one can calculate N for any given R;. R; is fixed by the
variables of inte%ration in eq. (2): We choose r and 0, the coordinates of the point of thermalization
measured from R, (see fig. 1). The law of cosines give R,, and eq. (3) gives N. Clearly the bulk
of the work lies in calculating pw, for therein lies the cross section for intermolecular vibrational
excitation. This quantity, which depends upon the energy of the incident secondary electron, is to
be gotten from a quantum mechanical calculation, but we do not know how to carry it out. By trial
and error, Mozumder and Magee arrived at a value of 5.5 x 10™ eV per collision, elastic or inelastic.
[6] Using this value along with AE = 40 eV, E, = 0.5 eV, R, =25 A, T =298 K, and € = 1.9, we
find N to be 460 for R, = 80 A (a representative value of the thermalization distance for nonpolar
liquids). Such a large number of steps suggests that a Gaussian distribution is accurate:
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Tt Y Co— ) exp(-3r/2NL?). (4)

L is the mean free path for elastic collisions. Mozumder and Magee somewhat arbitrarily take it to
be the mean molecular separation of molecules in the liquid. Equation (4) is slightly misleading, for
N depends upon R; and hence on r and 9, and the N-dependence of the preexponential factor must
be included in the integrand in eq. (3). Another consequence of the R,-dependence of N is that f
as written above is not normalized; one must divide the right hand side of eq. (2) by [ fdr.

The integration in eq. (2) is performed numerically and yields the escape probability of all
entities with AE = 40 eV. However, there is a distribution of AE values for a given value of E, [12]
the energy of the primary particle when it enters the medium. This distribution is known, more or
less. There is also a distribution of E values, and this depends on the nature of the source of
primary particles. P, depends upon AE and must be averaged over it with the appropriate
distribution function. The whole numerical process is shown schematically in fig. 2. The result of all
this work will be the yield of bulk secondary electrons appropriate for the experiment.

This procedure amounts to a poor man’s Monte Carlo calculation. There are a number of
approximations: The use of a Gaussian (eq. (4)) implies we are ignoring the Coulomb influence of
the cation during the random walk. The parameters L and po clearly should depend on the energy
of the secondary electron; the dividing line between the segments of the prethermal regime are not
as sharp as we have portrayed; the procedure as prescribed above is limited to one electron-cation
pair per entity; and it ignores trapping by density fluctuations and scavenger solutes. Perhaps more
significant is that time is not a part of the procedure, as it must be in order to include the influence
of an externally applied electric field. The latter extension can be made, either with an after-the-fact
modification of the procedure just described, or by integrating the Fokker-Planck equation in some
appropriate approximation. [13]

New data indicates that straight chain saturated hydrocarbons are very effective traps for
positrons with energies near 0.3 eV. [14] The mechanism is apparently the formation of vibrational
resonances. For hexane, the cross section for this is quite considerable, about 1.5 A?, which
corresponds to a mean free path of about 140 A. A random walk of 460 steps, each 5 A, will almost
always be terminated by capture into such a resonance, and this result must be accomodated in an
application of this procedure to positron thermalization for such liquids.

CALCULATION OF THE CROSS SECTIONS FOR SCATTERING IN LIQUIDS

The process under consideration in this section, the excitation of intermolecular vibrational
modes, is difficult to study experimentally, because the energy quanta involved, about 0.001 eV, are
in the far infrared. The Raman shift is observable for many liquids, and gives us the best information
we have for the process. In principle, a knowledge of the oscillator strength distribution yields the
cross section. Thermal diffusion data also yields some information, the idea being that energies of
the subvibrational region are so low that the processes for energy loss (and gain) must be similar to
those operating in the postthermal regime. Thus the mobility or the diffusion constant, or,
equivalentally, the momentum relaxation time for free Brownian motion, become crucial quantities.

Rather than proceed in this direction , we consider another system, closer to the interests and
expertise of most of the conferees: argon. Liquid argon is at once simpler and more complicated
than liquid hexane. Atoms are much simpler to treat quantum mechanically than molecules, but the
absence of intermolecular vibrations eliminates one of the segments from the prethermal regime, and
cooling below the threshold for electronic excitation relies on intermolecular vibrational excitation and
on elastic scattering from atoms and from density fluctuations. These are inefficient cooling
mechanisms, and the cooling electron has so much energy in the bulk of the segment where they
are operating that the random walk assumption which fueled our phenomenological discussion above
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is not valid.

In the remainder of this concluding section we consider the influence of the liquid medium on
the calculation of elastic scattering cross sections for atomic argon. Specifically, we want to know
what polarization potential to put into the scattering equation (using atomic units now and in the
remainder),

(1272 + Vo + Voy 12 K) w () = 0 (5)

where V,, is the static potential provided the incident electron or positron by the nucleus and the
target electrons, and V,, is the polarization potential. The latter has the welll known form -o/2r* for
an isolated atomic target at long range. At short range it is customary to multiply this by a function
w(r), commonly known as the cut-off function, which moderates the strongly diverging short range
behavior and hopefully includes some of the effects of short range correlation. For the liquid phase,
we know that the polarization potential is screened at long range by the intervening atoms. We follow
the important work of Lekner [15] in describing the calculation of this screening. The experimental
quantity for comparison is the drift velocity of electrons in the liquid as a function of electric field
strength. The comparison requires cross sections for elastic scattering and for momentum transfer.

Consider fig. 3, which is taken from ref. [15] The polarization potential experienced by the
atom at R due to the electron has the direct contribution -o w(r)/2r, and the indirect contribution due
to the induced dipoles in all the atoms, one of which is shown at t. Lekner defines a function h(R)
so that the total field at R is

1
— h(R) R (6)
R3

>
This has thg direct part 1/R? and an indirect part. To deduce the latter, consider the field at R due
to a dipole p at {:

E(s) = 7)

We must sum this field over all atoms except the %ne at ﬁ, but in doing so we may take advantage
of the fact that the result will be in the direction of R, so we need only include the component of E(R)
along R in the average:
+
1 > > 1 R > >
— h(R) R = ---3ﬁ - - Ing,(s) R-E(s) ds (8)
R R R .

The sum over étoms is accomplished by use of g.(s), the pair-correlation function of the liquid, and
n, the average number density of the atoms. The dipole EP is clearly

a 3
i =i h(t) t (9)

whxchd|splays ihe esgéhtial role of self-consistency in the determination of the function h by solving -
the integral equation (8). The palr-correlation function is known, and straightforward iteration leads
one directly to a realization of h.

The potential seen by the electron due to the polarization, direct and indirect, of the atom at
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R is evidently
-o. w(r) h(n/n. (10)

Unfortunately this result cannot be used to calculate phase shifts by using it as V., in eq. (5),
because the scattering electron (or positron) is never interacting with one atom across free space, but
rather is always interacting with intervening atoms as well. Lekner responds to this quandary with
the following construction: First we average V,, = V. + V., (the latter being given by eg. (10)) over
the ensemble:

Vol)> = VM) + 11 g,(8) Viofs) 0 (11)

Now, since the scattering particle responds only to changes in the potential and not to its magnitude,
we can subtract off a constant value and truncate. Lekner defines the effective scattering potential
to be

Volr) = <Viu(r)> - <NMiallo)> forr<r, (12)
and zero beyond, where r, is the location of the first maximum in <Vy(r)>. The calculated cross
section for the liquid and gas are compared in fig. 4, and the comparison between theory and
experiment for the drift velocity is shown in fig. 5.

The limited question of how the gas phase polarization potential should be modified in order to
accomodate scattering in liquids has been addressed. The approximations made are that fluctuations
in the number density do not effect the scattering process, and that multiple scattering effects are
negligible. The former approximation has been called into question by Basak and Cohen, [16] who
believe that the scattering of thermal electrons in liquid argon is dominated by a deformation potential
produced by long-wavelength density fluctuations.
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